72 research outputs found

    Accelerating beams

    Get PDF
    We demonstrate that any two-dimensional accelerating beam can be described in a canonical form in Fourier space. In particular, we demonstrate that there is a one-to-one correspondence between complex functions in the real line (the line spectrum) and accelerating beams. An arbitrary line spectrum can be used to generate novel accelerating beams with diverse transverse shapes. The line spectra for the special cases of the families of Airy and accelerating parabolic beams are provided

    Elliptical beams

    Get PDF
    A very general beam solution of the paraxial wave equation in elliptic cylindrical coordinates is presented. We call such a field an elliptic beam (EB). The complex amplitude of the EB is described by either the generalized Ince functions or the Whittaker-Hill functions and is characterized by four parameters that are complex in the most general situation. The propagation through complex ABCD optical systems and the conditions for square integrability are studied in detail. Special cases of the EB are the standard, elegant, and generalized Ince-Gauss beams, Mathieu-Gauss beams, among others

    Normalization of the Mathieu-Gauss optical beams

    Get PDF
    A series scheme is discussed for the determination of the normalization constants of the even and odd Mathieu-Gauss (MG) optical beams. We apply a suitable expansion in terms of Bessel-Gauss (BG) beams and also answer the question of how many BG beams should be used to synthesize a MG beam within a tolerance. The structure of the normalization factors ensures that MG beams will always be normalized independently of the particular normalization adopted for the Mathieu functions. In this scheme, the normalization constants are expressed as rapidly convergent series that can be calculated to an arbitrary precision

    Nondiffracting Accelerating Waves: Weber waves and parabolic momentum

    Full text link
    Diffraction is one of the universal phenomena of physics, and a way to overcome it has always represented a challenge for physicists. In order to control diffraction, the study of structured waves has become decisive. Here, we present a specific class of nondiffracting spatially accelerating solutions of the Maxwell equations: the Weber waves. These nonparaxial waves propagate along parabolic trajectories while approximately preserving their shape. They are expressed in an analytic closed form and naturally separate in forward and backward propagation. We show that the Weber waves are self-healing, can form periodic breather waves and have a well-defined conserved quantity: the parabolic momentum. We find that our Weber waves for moderate to large values of the parabolic momenta can be described by a modulated Airy function. Because the Weber waves are exact time-harmonic solutions of the wave equation, they have implications for many linear wave systems in nature, ranging from acoustic, electromagnetic and elastic waves to surface waves in fluids and membranes.Comment: 10 pages, 4 figures, v2: minor typos correcte

    Comment on 'Exact solution of resonant modes in a rectangular resonator'

    Get PDF
    We comment on the recent Letter by J. Wu and A. Liu [Opt. Lett. 31, 1720 (2006)] in which an exact scalar solution to the resonant modes and the resonant frequencies in a two-dimensional rectangular microcavity were presented. The analysis is incorrect because (a) the field solutions were imposed to satisfy simultaneously both Dirichlet and Neumann boundary conditions at the four sides of the rectangle, leading to an overdetermined problem, and (b) the modes in the cavity were expanded using an incorrect series ansatz, leading to an expression for the mode fields that does not satisfy the Helmholtz equation

    Airy-Gauss beams and their transformation by paraxial optical systems

    Get PDF
    We introduce the generalized Airy-Gauss (AiG) beams and analyze their propagation through optical systems described by ABCD matrices with complex elements in general. The transverse mathematical structure of the AiG beams is form-invariant under paraxial transformations. The conditions for square integrability of the beams are studied in detail. The model of the AiG beam describes in a more realistic way the propagation of the Airy wave packets because AiG beams carry finite power, retain the nondiffracting propagation properties within a finite propagation distance, and can be realized experimentally to a very good approximation

    Topological Photonic Quasicrystals: Fractal Topological Spectrum and Protected Transport

    Full text link
    We show that it is possible to have a topological phase in two-dimensional quasicrystals without any magnetic field applied, but instead introducing an artificial gauge field via dynamic modulation. This topological quasicrystal exhibits scatter-free unidirectional edge states that are extended along the system's perimeter, contrary to the states of an ordinary quasicrystal system, which are characterized by power-law decay. We find that the spectrum of this Floquet topological quasicrystal exhibits a rich fractal (self-similar) structure of topological "minigaps," manifesting an entirely new phenomenon: fractal topological systems. These topological minigaps form only when the system size is sufficiently large because their gapless edge states penetrate deep into the bulk. Hence, the topological structure emerges as a function of the system size, contrary to periodic systems where the topological phase can be completely characterized by the unit cell. We demonstrate the existence of this topological phase both by using a topological index (Bott index) and by studying the unidirectional transport of the gapless edge states and its robustness in the presence of defects. Our specific model is a Penrose lattice of helical optical waveguides - a photonic Floquet quasicrystal; however, we expect this new topological quasicrystal phase to be universal.Comment: 12 pages, 8 figure

    Higher-order moments and overlaps of Cartesian beams

    Get PDF
    We introduce a closed-form expression for the overlap between two different Cartesian beams. In the course of obtaining this expression, we establish a linear relation between the overlap of circular beams with azimuthal symmetry and the overlap of Cartesian beams such that the knowledge of the former allows the latter to be calculated very easily. Our formalism can be easily applied to calculate relevant beam parameters such as the normalization constants, the M2 factors, the kurtosis parameters, the expansion coefficients of Cartesian beams, and therefore of all their relevant special cases, including the standard, elegant, and generalized Hermite–Gaussian beams, cosh-Gaussian beams, Lorentz beams, and Airy beams, among others
    corecore